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In this paper, an efficient class of second derivative linear multistep method is
proposed. The proposed method allows for two non-zero roots of the second
characteristics polynomial within the unit circle. The stability of the proposed
method is presented and stability regions for certain choices of pair non-zero roots
are examined. The method is A-stable for order p <4 and A(a)-stable for
order p < 12. Numerical tests are carried out for suitable comparisons of the
proposed method with a well-known subclass of the second derivative linear
multistep method.

INTRODUCTION

Suitable methods for the numerical integration of stiff initial value problems are required to
satisfy a restrictive condition of A-stability, Cash, (2000). This condition limits attainable order
an A-stable Linear Multistep Method (LMM) can achieve, (Athe and Muka, 2017, Butcher,
2008). Researches have scale up the attainable order of methods for integrating stiff initial value
problems. Some ways by which this can be done is by the development of methods that allows
future points or stages and the use of higher derivatives of solution component incorporated into
the method, Athe and Muka (2017), Chakravarti, and Kamel, (1982). The Backward
Differentiation Formula (BDF) and its variants are well known for solving stiff initial value
problems as it affords an easy means of implementation with a relatively minimum amount of
computational effort, Ismail and Ibrahim, (1999). The construction of the second derivative linear
multistep method is of importance in this paper as the second derivatives are easily obtainable
since continuity and twice differentiability of function of the problem can be guaranteed at all
times. Examples of second derivative methods can be found in Hojjati, et. al, (2006), Muka and
Obiorah, (2016), Muka and Olu-Oseh, (2017). The success achieved in the Second Derivative
Backward Differentiation Formula (SDBDF) is of considerable commendation and as such,
research in this direction is unending. The model stiff system is given as

V(0= (% Y(0), Y(Xo) = Yo f RXRY > RY,y, e R" &)

This paper is on finding efficient second derivative linear multistep methods with better stability
characteristics in comparison to the conventional SDBDF.

SECOND DERIVATIVE MULTISTEP METHODS
The general k-step Second Derivative Linear Multistep Method (SDLMM) for solving the 1VP
(1) is of the form

k k k
Zajym—j = hZﬂ] fn+j + hzzyj fn’+j (2)
j=0 j=0 j=0

where o, =1, f' EM ,aj,ﬁj, andg/j, j=0,1,....k are parameters to be

n+j dX

X=Xnsj

determined. The SDLMM (2) is explicit if both S, or y, are zero, else it is implicit. The
polynomial notation of the SDLMM (2) is given as
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p(E)Y, =ho(E)f, +h*z(E)f, 3)
k k k

where p(E):ZaJ—Ej, U(E):ZﬂjEj, andﬂ(E):Zijj. 4)
j=0 j=0 j=0

The polynomials: p(E);o(E);and 7 (E)are called the first, second and third characteristics

polynomials respectively. Taylor series expansion of SDLMM (2) about X, shows that the

SDLMM (2) is of order p, if and only if
k

k k
Zajjqz QZﬁjjq_l"‘q(q_l)Z?/jjq_z ®)
j=0 j=0 j=0
with0 < g <p.
The error constant of SDLMM (2) is given by
i jp+l jp Jp
C a= ( oa—-——p - v
R (et ptt (p-nt
Examples of second derivative linear multistep methods are:
i) The Second Derivative Multistep Method (SDMM) (7) in Ismail and Ibrahim, (1999) given as
k

ip-1

)#0 (6)

Yn+1 = Yn + hz ﬁjfn+j—k+1 + hz]/kf,;+1 (7)
j=0
and ii) SDBDF (8) in Ezzeddine and Hojjati (2011) given as
k-1
Yn+k = Z Yt j + BB fusi ¥ W2Viefnik 3
j=0

The k-step SDMM (7) has order of k +2. SDMM (7) is A-stable for k = 1,2 and A(a)-stable
for k = 3,4,...,7 and unstable for k > 8. The SDBDF (8) is a class of k-step formulas having
order of k + 1. SDBDF (8) is A-stable for k = 1,2,3 and A(«a)-stable for k = 4,5, ...,10 and
unstable for k = 11.

Considering the third characteristics polynomial of the SDMM (7), notice that all its roots are
located at the origin. The idea however is to ensure stability at infinity, Enright, (1974) and
Hairer, et. al, (2002). However, Chakravarti and Kamel (1982) stated that stability at infinity will
still be ensured if all its roots are located within the unit circle. The method derived via the
modification of the SDMM (7) for cases of one, two, and three roots not at the origin but within
the unit circle yielded SDLMM with an order as high as p = 13. The case of the SDMM (7)
having two non-zero roots is given as

k
Ynt1 =¥nt+ hz Bifu+j-k+1 + R2vi(f' ., +(@+b)f' +abf’ ) ©)]
=0

The stability characteristics of the SDBDF (8) and the SDLMM (9) are given in Tables 1 and 2
respectively

CONSTRUCTION OF METHOD

Consider the second derivative linear multistep method (SDLMM) of the form
k

> @ne; = Bl + @+ D fusics + bfurid) ¥ B¥icfpc (10)
j=0
where aj,ﬂk, and y, , are parameters to be determined, a and b are non-zero roots that are less
than one in absolute value. If a =b =0 in (10), reduces to SDBDF. The structure of the
polynomials in (10) where |a| <1,|b| <1 holds are given as
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pO-Yap oO-AL+aE), 2O-r @

The linear difference operator associated with the SDLMM (10) is given in (12)
k

LIy(xn);h]= Z[an(Xn + 1N (' (q +kh) + @+ b)Y'(X, + (k—1)h) + &by (x, + (k = 2)h)) = W, y"(x, + kh)
j=0
(12)
It is assumed here that Yy(X,+ jh) is differentiable as many times as desired. The other
conditions obtained upon Taylor expanding the linear difference operator associated with the
SDLMM (10) are given as

L[y(xn);h]:Coy(xn)+Clhy'(xn)+C2h2y"(xn)+...+thqu(xn)+... (13)
where
C, = Zk:aj
j=0
C, = Zk:ja -+ (a+b)+ab)p,
j=0
c, = Z% |~ B (k+(a+b)(k—1)+ (ab)(k - 2)) - 7,
j=0
C, = zk:j— .—L(kqu(am)(k 1) +ab(k —2)% ") - ke* Vo) q=3,4,-
i tql 1 (g-1)! (q-2)1"" Y
(14)

The parameters «a;, f,, and 7, , are obtained by setting the first (k + 2) equations to zero and

solving the corresponding linear systems. These parameters are dependent on the non-zero roots
a and b. The SDLMM (10) is a class of k-step methods having order p = k + 1. The coefficients
of the SDLMM (10) are presented in Table 3.

Table 1: Stability characteristics of SDBDF

K 1 2 3 4 5 6 7 8 9 10
p 2 3 4 5 6 7 8 9 10 11
a  90° 90° 90° 89.36° 8635° 80.82° 7253° 6071°  43.39° 12.34°
C E i i 24 600 450 2450 7840 635040 529200
p+l 6 21 425 2075 84133 94423 726301 3144919 333304301 353764433

Table 2: Stability characteristics of SDLMM (9)

k 3 4 5 6 7 8 9 10

p 5 6 7 8 9 10 11 12

a -09 —09 -0.9 -0.9 -05 -038 -0.9 -038

b 02 01 -01 -0.1 -05 -03 -0.3 -07

a 8903° 8532° 80.92° 75.13° 67.76° 56.84° 38.39° 20.2°
Cpi1 391 271 507511 723163 579353 452656 376779 557272

211200

298620

1023684480 1936478588 2111961600 2145776967 2287832516 4666515293
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Table 3: Coefficients of SDLMM (10) for k = 2,3,...,11.
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k
Order

Qo
aq
a
as
a4
as
Qe
Br—2
Bre-1
Br
Yk

Cpin

2 3 4 5 6
3 4 5 6 7
1—2(a+b)—1lab —4+5(a+b) — 16ab 18 — 17(a + b) + 28ab —144 + 111(a + b) — 124ab 300 — 197(a + b) + 167ab
F G 5H i 7]
2(—4—(a+b)+8ab) 3(—9+14(a+b)+19ab)  4(32 —33(a + b) + 72ab) 5(225 — 182(a + b) + 228ab) 9(288 — 195(a + b) + 176ab)
B F G 5H B i 7]
1 3(—36+ a + b + 32ab) 6(—72 + 93(a + b) + 38ab) 20(200 — 177(a + b) + 294ab) 45(225 — 160(a + b) + 162ab)
B G 5H 1 B 7]
1 4(—288 + 47(a + b) + 152ab) 10(—900 + 1002(a + b) + 47ab)  20(1200 — 935(a + b) + 1256ab)
B 5H 1 7]
1 _ 5(—3600 + 857(a + b) + 1284ab) 45(900 — 885(a + b) + 109ab)
I - 7]
1 9(—7200 + 2033(a + b) + 1872ab)
_ -
1
6 66 120 8220 3780
—Fa - G a - H a - 1 a - a
6(a+b 66(a+b 120(a+ b 8220 3780
_Saxb) _66(atb) _120(a+b) 820 380
F G H i
6 66 120 8220 3780
F G H i Ji
2+a+b—2ab 6(3 — (a + b) + ab) 12(12 — 3(a + b) + 2ab) 180(10 — 2(a + b) + ab) 180(30 — 5(a + b) + 2ab)
F G 5H i 7]

4 —5a —5b + 16ab

18 —17a — 17b + 28ab

84 + 48a + 48b — 60ab

850 + 340a + 340b — 230ab

—144 + 111a + 111b — 124ab

600 — 394a — 394b + 334ab

9(800 — 345h + a(—345 + 236b))

75(—166 — 51b + 3a(—17 + 8b))

84133 + 20958a + 20958b — 7602ab

" 196(—5781 — 1210b + 2a(—605 + 1795))

where F = —7 —4a — 4b + 5ab,

G = —85 —34(a + b) + 23ab,
[ = —12019 — 2994(a + b) + 1086ab, | =-—5781— 1210(a + b) + 358ab.

H = (—166 —51(a + b) + 24ab),
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Table 3: Continuation
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k

Order

7 8 9 10
8 9 10 11
18(600 — 345(a + b) + 236ab) 15(2940 — 1509(a + b) + 866ab) 10(15680 — 7287(a + b) + 3604ab) 7(45360 — 19298(a + b) + 8389ab)
K B L M B 11N
7(14700 — 8634(a + b) + 6145ab) 48(9600 — 5005(a + b) + 2952ab) 15(119070 — 56004(a + b) + 28259ab) 25(156800 — 67347 (a + b) + 29728ab)
- K L - M 11N
567(784 — 475(a + b) + 360ab) 56(39200 — 20881(a + b) + 12815ab)  96(97200 — 46445(a + b) + 24087ab) 75(297675 — 129411 (a + b) + 58282ab)
K - L M - 11N
1575(735 — 468(a + b) + 398ab)  168(37632 — 20685(a + b) + 13520ab) 196(151200 — 73832(a + b) + 39845ab) 240(324000 — 143115(a + b) + 66248ab)
B K L B M 11N
350(5880 — 4107(a + b) + 4636ab) 1050(11760 — 6797 (a + b) + 4986ab)  1176(54432 — 27435(a + b) + 15770ab) 980(189000 — 85329 (a + b) + 41105ab)
K B L M B 11N
567(4900 — 4330(a + b) + 919ab)  560(31360 — 19901 (a + b) + 19384ab) 1470(68040 — 36076(a + b) + 23277ab) 588(544320 — 253719(a + b) + 130192ab)
- K L - M 11N
_ 63(-58800 + 18201(a + b) + 11720ab) 504(39200 — 31535(a + b) + 8249ab) 7840(15120 — 8809(a + b) + 7549ab) 7350(56700 — 27813 (a + b) + 16022ab)
K - L M - 11N
1 72(—313600 + 102363(a + b) + 49680ab)  36(3175200 — 2348920(a + b) + 679907ab) 2800(151200 — 81549 (a + b) + 62408ab)
1L 18(—6350400 + 21381\5429(11 +b) + 821660ab) 135(2646000 — 181}1%31¥0(a +b) +553327ab)
B M - 11N
1 5(—63504000 + 21769309(a + b) + 6855520ab)
- 11N
1
_ 1372140 _ 7670880(ab) ~ 35930160(ab) _ 8454600(ab)
K L M N
1372140 7670880(a + b) 35930160(a + b) 8454600(a + b)
——x @b - L - M - N
1372140 7670880 35930160 8454600
T K L M TN
12600(21 — 3(a + b) + ab) 25200(56 — 7(a + b) + 2ab) 176400(36 — 4(a + b) + ab) 176400(90 — 9(a + b) + 2ab)
K L M 11N

5(2940 — 1509b + a(—1509 + 866b))

2(15680 — 7287b + a(—7287 + 3604b))

28(45360 — 19298b + a(—19298 + 8389b))

4357806 + 786000b — 20a(—39300 + 9833b)

12579676 + 1992445b — 5a (—398489 + 86458b)

T 11(—60600782 — 8552740b + 35a(—244364 + 46833b))

35(226800 — 89109b + a(—89109 + 34564b))
363(— 14618365 — 1859949b + 7a(—265707 + 45626b))

where K = —2178903 — 393000a — 3930005 + 98330ab,

L = —12579676 — 1992445(a + b) + 432290ab,

M = —60600782 — 8552740(a + b) + 1639155ab, N = —14618365 — 1859949a(a + b) + 319382ab.
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Table 3: Continuation
k 11

Order 12
a, 140(226800 — 89109(a + b) + 34564ab)

P
@ 77(5488560 — 2173180(a + b) + 853191ab)

P
@, 275(9486400 — 3792285(a + b) + 1511856ab)

P
a; _ 2475(4002075 — 1619490(a + b) + 658742ab)

P
@, 3960(6534000 — 2686775(a + b) + 1123332ab)

P
a5 97020(508200 — 213622(a + b) + 92951ab)

P
@ 19404(3659040 — 1588305(a + b) + 736216ab)

P
a, _69300(1143450 — 522505(a + b) + 271923ab)

P
@,  69300(1016400 — 510955(a + b) + 353324ab)

P
@ 55(960498000 — 614697300(a + b) + 192335879ab)

P
@y, 55(—768398400 + 265821851(a + b) + 70409808ab)

P
aqq 1
Br_s 11602344600 b
T

P
11602344600
ﬁk—l _ (Cl + b)

B, 11602344600

P
ve 34927200(55 — 5(a + b) + ab)

P
Cpin 210(1524600 — 557155b + a(—557155 + 195142h))
13(126a(—18851515 + 2933193b) — 5(4102360483 + 475058178b))
where P = —20511802415 — 2375290890(a + b) + 369582318ab.

STABILITY ANALYSIS
The stability properties of the proposed SDLMM (10) are established.
Applying the SDLMM (10) to test equation (15),

y'(x)=Ay (15)

yields the stability polynomial
k -
(t,z) =Y at’ -z (t" +(@+b)t " + (@bt ?) -2’y t*; z=41h (16)

j=0
Equating (16) to zero, yields the characteristics equation

kK
M(t,z)=> a;t' =0 (17)
j=0

Testing for the zero stability of the SDLMM (10), substitute z = 0 in (17) and obtain the roots.
The k—step SDLMM (10) is zero-stable if the roots t;, j=12,...,k of the first

characteristics polynomial p(t) are such that|tj| <1 j=12,...,kand ‘tj ‘ = 1being simple.
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The roots of the first characteristics polynomial of the SDLMM (10) are dependent on a and b
and with only one root equal to unity and other roots can be verified to be less than unity for
choices of a and b within the unit circle. Thus, the SDLMM (10) is zero stable. To obtain the
region of absolute stability, the boundary locus method is used, Lambert, (1991). Setting t =
e® i=01,.. k in (16) yields a polynomial of degree two in z. The roots of zj(0),j =12
describes the stability domain of the SDLMM (10). The search for stable SDLMM (10) is carried
out using MATHEMATICA 10 to scan for a and b with the domain (—1,1). The corresponding
a-values, and the error constants are presented in Table 4 for certain choices of a, b € (—1,1).

It is important to note that the comparison of the SDLMM (10) and the SDBDF from Tables 1
and 4, shows that the regions of absolute stability of the SDLMM (10) are larger than those of
the SDBDF. There is also a considerable improvement in obtaining stable methods of order 12
of which the SDBDF is unstable for. Table 2 is the stability characteristics of SDLMM (9) with
choices of roots a and b within the unit circle.

Table 4: Stability characteristics of SDLMM (10)

k 2 3 4 5 6 7 8 9 10 11
p 3 4 5 6 7 8 9 10 11 12
a 06 -09 -09 -09 -0.9 —-0.5 -0.8 -0.9 -0.7 -04
b 02 02 01 -01 -0.1 -0.5 -0.3 -0.3 -0.6 -0.9
a 90° 90° 89.9° 882° 83.7° 75.9° 66.6° 53.7° 36.3° 6.27°

1 53 1847 8976 108702 18563 153847 2201317 337306 4601
60 1393 79600 547739 11120011 2803163 32210026 609602719 118188535 2123557

NUMERICAL TESTS
Numerical experiments are carried out using the SDLMM (10) and the SDBDF (8) to solve three
standard DETEST problems in the literature. The Newton-Raphson iterative scheme is used to
resolve the implicitness in the methods with a fixed stepsize h. The results are presented in Tables
5-7.

Table 5: Absolute errors of y,,y, and y; solution components for problem 1

X Vi ly(x) = ysprmml ly(x) = yspaorl

05 y; 1.22045252E — 6 1.3701995533301273EF — 6
y, 1.3865571294000012F —5 1.5528135377002040F —5
y;  1.356077139461398F —3 1.5224645626181754F — 3

1.0 y; 6.408630200196996F —7 7.3270463502028700F — 7
y, 7.404964248995671F —6 8.4236286829950100F — 6
y;  7.120813965624251F —4 8.1412874672714960F — 4

15 y, 2941705075304793E —7 3.5084118752987810F —7
y, 3.535413577004931F —6 4.1630323390079440F — 6
y;  3.268629723089944F — 4  3.8983106886902874F — 4

20 y, 8.850097234051890F —8 1.2379229333975283F —7
y, 1.2350303180003186F —6 1.6249915229943346F — 6
y;  9.8338548380816350F —5 1.3755153646322071F —4
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The stiff linear systems

y1 = —10%y; + 100y, — 10y; +y,,  y,(0)=1
y3 = =103y, + 10y;3 — y4, y,(0) =1
vz = —y3 +10y,, y3(0) =1
ys = —0.1y,, y.(0) =1

x € [0,2]. Using fixed stepsize of (h = 10~*), the absolute errors are shown in Table 5.

In Table 5, the absolute errors of the numerical solutions of the SDLMM (10) and SDBDF (8)
are presented. The SDLMM (10) is seen to possess smaller absolute errors when compared with
the SDBDF (8).

Problem 2
The Stiff perturbated linear systems
y! = —2000y, + 1000y, +1, y,(0)=0
Y2 =Y1— Y2 y,(0)=0
x € [0,1]. The absolute errors obtained when solving using a fixed stepsize (h = 107°) are
presented in Table 6.

Table 6: Absolute errors of y; and y, solution components for problem 2

X Vi ly(x) = yspram| ly(x) = yspgorl
0.4 y, 1.0685480099999114F —7 1.0941540599994446E — 7
y, 2.1695454099999317E —7 2.1877612100000467F —7
0.6 y; 9.7984033000059030F —8 1.0061498399997933E — 7
y, 1.9921743799999458E —7 2.0117967499999655F — 7
0.8 1y, 87111501999976270E —8 8.9806106999936260F — 8
vy, 1.7747780900001595F —7 1.7956732000000506F — 7
1.0 y, 6.9538078999978500F —8 7.2290280999916070F — 8
vy, 1.4233974799998314F —7 1.4454442500002685E —7
Problem 3
Consider the linear system
y1=-05y;, »(0)=1
Y2 = —V1, y.(0)=1
y; =—100y;, y5(0)=1
Y4 = —90y,, y4(0) =1

x € [0,2], whose exact solution are: y;(x) = e™%%% y,(x) = e™*,y3(x) = 710 y,(x) =
e—90xl

The absolute error obtained upon solving problem 1 with SDLMM (10) and SDBDF (8) using
fixed stepsize (h = 10~*) are displayed in Table 7.

The SDLMM (10) possess smaller absolute errors when compared with the SDBDF (8).
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x Vi ly(x) = ysprmml ly(x) — ¥sppprl
05 vy, 1.0795507502692203E —4 1.1702832555793297E — 4
y, 1.6614027349903804E —4 1.8227244692603506F — 4
1.0 y, 8.4246871762005960F —5 9.1313126380998530F — 5
vy, 1.0012175678902890F —4 1.0990641457703232E — 4
15 y, 6.5793797217994500E —5 7.1297001847991930F — 5
vy, 6.0834443733004395E —5 6.6769138673983260F —5
20 1y, 5.0450782865030240F —5 5.4736682940037530F — 5
y, 3.6711909994019410F —5 4.0311484430011200F —5

The SDLMM (10) possess smaller absolute errors when compared with the SDBDF (8).

CONCLUSION

In this paper, the second characteristics polynomial of the SDBDF (8) is modified so as to
accommodate a pair of non-zero roots, this results in a new proposed SDLMM (10). The
proposed SDLMM is efficient and possesses a wider region of absolute stability when compared
to SDBDF. The integration of three standard problems from DETEST show that absolute errors
incurred using the proposed method is smaller when compared with those of SDBDF as shown
in Tables 5-7. Therefore, the proposed SDLMM (10) is suitable for the numerical integration of
stiff systems.

REFERENCES

Athe, B.O. and Muka, K.O. (2017), Third Derivative Multistep Methods with Optimized regions
of Absolute Stability for Stiff Initial Value Problems in Ordinary Differential Equations.
Nigerian Research Journal of Engineering and Environmental Sciences, 2(2): 369-374.

Butcher, J.C. (2008), Numerical Methods for Ordinary Differential Equations, John Wiley & Son
Ltd, Chichester.

Cash, J.R. (2000), Modified Extended Backward Differentiation Formulae for the Numerical
Solution of Stiff Initial Value Problems in ODEs and DAEs, Journal of Computational and
Applied Mathematics, (125), pp 117-130.

Chakravarti, P.C. and Kamel, M.S. (1982), Stiffly Stable Second Derivative Multistep Methods
with Higher Order and Improved Stability Regions. BIT, (23), pp. 75-83.

Enright, W.H. (1974), Second Derivative Multistep Methods for Stiff Ordinary Differential
Equations. SIAM Journal of Numerical Analysis, (11), pp. 321-331.

Ezzeddine, A.K. and Hojjati, G. (2011), Hybrid Extended Backward Differentiation Formulas
for Stiff Systems. International Journal of Nonlinear Science. (12), 2, pp. 196-204.
Hairer, E., Norsett, S. and Wanner, G. (2002), Solving Ordinary Differential Equations II: Stiff

and Differential -Algebraic Problems, Springer-Verlag.

Hojjati, G., Rahimi Ardabili, M.Y. and Hosseini, S.M. (2006), New Second Derivative Multistep
Methods for Stiff Systems. Applied Mathematical Modelling (30), pp. 466-476.

Ismail, G.A.F and Ibrahim, I.H. (1999), New Efficient Second Derivative Multistep Methods for
Stiff Systems. Applied Mathematical Modelling, (23), pp. 279-288.

Lambert, J.D. (1991), Numerical Methods for Ordinary Differential System: The Initial Value
Problems, John Wiley & Sons, Ltd, Chichester.

Muka, K.O. and Obiorah, F.O. (2016), Boundary Locus Search for Stable Second Derivative
Linear Multistep Method for Stiff Initial Value Problems in ODEs. Journal of the Nigerian
Association of Mathematical Physics, (37), pp 173 — 178.

Muka, K.O and Olu-Oseh, A.S. (2017), Boundary Locus Search for Stiffly Stable Second
Derivative Linear Multistep Formulas for Stiff ODEs. University of Ibadan Journal of
Science and Logics in ICT Research (1), pp. 7-14.

World Journal of Applied Science and Technology, Vol. 9 No.2, (2017), 141 — 149 149



